
INTERNET DOCUMENT INFORMATION FORM 

A. Report Title: A Compositional Proof System for the Modal 
micro-calculus and CCS 

B. DATE Report Downloaded From the Internet: 21 Apr 98 

C. Report's Point of Contact: (Name, Organization, Address, 
Office Symbol, & Ph # Carnegie Mellon University, Pittsburgh, 
PA 

D. Currently Applicable Classification Level: Unclassified 

E. Distribution Statement A: Approved for Public Release 

F. The foregoing information was compiled and provided by: 
DTIC-OCA, lnitials:_PM_ Preparation Date: 21 Apr 98 

The foregoing information should exactly correspond to the Title, Report Number, and the Date on 
the accompanying report document. If there are mismatches, or other questions, contact the 
above OCA Representative for resolution. 

DU £7X1 

19980424 063 



A Compositional Proof System for the Modal 
ju-calculus and CCS 

Sergey Berezin1 and Dilian Gurov2 

January 15, 1997 
CMU-CS-97-105 

School of Computer Science 
Carnegie Mellon University 

PittsburghrPA 15213 

^ept. of CS, CMU, berez+@cs.cmu.edu 
2Dept. of CS, University of Victoria,dgurov@csr.uvic.ca 

M^SMö'iiUi-   St^mSf>iM j| -a 
Äjgpxovea toi  puößs s®l<K 

DTTC QUALITY INSPECTED, 

This research was sponsored by the National Science Foundation under grant no. CCR-9217549. The 
views and conclusions contained in this document are those of the authors and should not be interpreted as 
representing the official policies, either expressed or implied, of the NSF or the U.S. government. 



Keywords: automatic verificationrtheorem provingFmodal ^-calculusl1 compositional model 
checking. 



Abstract 

We present a Compositional Proof System for the modal /i-calculus and a generalized version 
of the parallel composition in CCS [11T12]. The proof system is designed for inferring global 
properties of a system from the local properties of its components. This allows for efficient 
verification of parallel processes by decomposing the task into smaller problems of verifying 
the parallel components separately. In particularrthe system can be used to combine model 
checking [6] with theorem proving. Since parallel composition causes the largest blow-up in 
the number of statesrthis technique proposes an effective solution to the state space explosion 
problem. The Proof System is implemented in PVS theorem prover [13]rand the proof of its 
soundness was thoroughly checked using PVS logic as a metalanguage. The proof strategy 
mechanism of PVS can be used to achieve some degree of automation in a proof search. 



1    Introduction. 

In this paper we present a Compositional Proof System for the modal ^-calculus and CCS 
[lir 12]. We use a (slightly modified version of) CCS as a model of concurrency. Many 
systems of parallel processes can be expressed as CCS processes!" and then checked against 
specifications in the modal ^-calculus. Following Stirling [14]V our proof system consists of 
two subsystems. The first one deals with model checking CCS processes without the parallel 
composition operatorri.e. it contains proof rules for sequents of the form p h $ ("process p 
satisfies a formula $")rand is described in detail in [8] for the more general process algebra 
of Value Passing CCS and a first order /i-calculus. The other subsystemrwhich is presented 
in this paperris devoted to a parallel composition operator and is designed to prove sequents 
given by $||\I/ h 0 ("for any processes p and q satisfying $ and \f respectivelyrthe composite 
system p\\q satisfies 0"). These two proof systems with an additional inference rule from [14]: 

ph$    $||$ H0    q\-V 

7% 1-0 ("j 

result in a compositional proof system for CCS (now with parallel composition operator) and 
the modal //-calculus. Both subprocesses in each parallel composition operator have associated 
formulas specifying their properties. Whenever we are to prove a property of a parallel compo- 
sitionrwe first prove that the corresponding properties hold for each componentland then infer 
in the proof system that the global property of the composition also holds. This compositional 
step substantially simplifies the verification problemFsince it avoids building the whole state 
space for the parallel composition in finite-state case. This state space grows exponentially in 
the number of processes involvedrthus causing the state explosion problem. Thusüas a partic- 
ular caseFwe propose a promising method of combining model checking with theorem proving]? 
when the verification of the components is accomplished by model checking. 

Our verification framework also supports a compositional design in the sense that one can work 
out specifications for all the parts of a complex system and prove by our method that if every 
component satisfies its specificationrthen the whole design is correct. After the implementation 
it is enough to verify each component separately. Moreoverlone can change the actual imple- 
mentation of some components without having to repeat the verification of the entire system 
as soon as the new implementation meets its local requirements. 

Our compositional approach differs from many others [2r3r5r7] in that it can handle the 
parallel composition operator in a purely compositional way and at the same time remains 
general for the full CCS and the full modal ju-calculus. In [2r3I?5] the parallel composition 
operator was eliminated basically by encoding one of the subprocesses into the formula. In 
the worst case this results in an exponential blow-up in the size of the formulaFand the total 
complexity remains the same as for non-compositional model checking [6]. The proof system 
of C. Stirling [14] isFprobablyrthe most compositional in a sense that it clearly reduces the 
verification problem to the verification of components. In factrour system has originated from 
it. But Stirling considers the Hennessy-Milner logicFwhich is too weak to be of much interest 
in practice. The proof system of M. Dam [7] is also very close in spirit to oursPand is complete 



for finite-state processes. The latter systemFhoweverFuses the r action for all synchronizations? 
and in the rule h [r] (that corresponds to our ([rl])) there have to be as many premises as 
there are actions in the model. ThereforeFone can only have a finite set of actionsFwhereas our 
system can handle infinite sets of actions as well. 

The proof system is implemented in PVS theorem prover [13]. The PVS specification language 
is used as a metalanguage to specify and prove the soundness of all the inference rules and 
axioms. The proof system is encoded as a set of theoremsr which can be used as rewrite 
rules while a proof is in progress. Since PVS has a built-in model checkerrboth steps of the 
verification of finite-state systemsn.e. model checking the components and deriving the global 
propertyrcan be done in a single framework. AlsoFPVS provides a powerful mechanism of 
writing proof strategies for automated proof search in our system. 

The paper is organized as follows. Section 2 describes our version of CCS. Section 3 introduces 
the modal /u-calculus [9] (syntax and semantics)rand provides some examples of useful prop- 
erties. Section 4 describes the Compositional Proof System and shows an example of a proof 
in the proof system. In Section 5 we argue for the soundness of the proof systemrin particular 
for the soundness of the fixed point rules. In Section 6 we discuss the issue of implementation 
in PVS and two examples that we verified. We conclude in Section 7. 

2    The Process Algebra. 

We use the standard CCS of R. Milner [liri2]Fexcept that we change the parallel composition 
operator and the means of synchronization. The importance of this change will become clear 
in section 4Fwhere we need it to simplify the compositional inference rules. Instead of actions 
{a,.. .}rco-actions {ä,...} and the special action rFwe define input {a?,.. .}Foutput {a\,...} 
and neutral {a,...} actions respectively. We will denote actions of arbitrary type by Greek 
letters 7,5,.... Now two processes in a parallel composition may synchronize by input and 
output actions of the same nameFyielding the corresponding neutral action (one might write 
this fact as a! • a\ = a\ • a! = a). In other wordsFwe distinguish between T-actions which are 
formed by different pairs of actions. 

Our parallel composition operator also has a more general form in comparison with CCS: PT\\A Q 
can be considered roughly as (p \T)\(q\A) in the original CCSrwhere V and A are sets of 
action symbols. This operator is taken from [2]. Thusrthe abstract grammar of our CCS is the 
following: 

p ::= 0| P\l.p\po+Pi IPOTIIAPI \ptA\p{Z}. 

Here 0 is the nil process (called inaction in [ll])rthat can not perform any actionFP is a process 
identifierTj.p is a prefix operatorFp+g is a non-deterministic choicer \A and {E} are restriction 
and relabelling. Process identifiers are declared using an identifier declaration of the form 

P=p. 



We will denote the set of all CCS processes by V.  The operational semantics of our CCS is 
shown on figure 1.   As an examplefconsider these simple processes: 

P 2$. q    \   is declared  / ^,p4p p + q 4- p' p + 9 -+ ?' 

J4*-  («r 6 A) ??? (E(7) = 5) PV^T'      ( £!£ ) 
pfA4-?rA p{ 

p-^-p' f„en "^'  «PA)      p4p'  g^g'     / o!er  N 
94p'r||A9   l7fc   '     »HIA-I-WIIA«' Pr||A9Ap'r||A9'   V a? G A ' 

Figure 1: Operational semantics of the CCS. 

P = a.b\.P 
Q = bl.c.Q 
R = (Pr||AQ)rA, 

where T = {a, b\}TA = {&?, c} and A = {a, b, c}. 

The process R is combined from the two processes P and Qrthat perform asynchronous actions 
a and c and are forced to synchronize by bl and 6!Tsince 6?, 6! ^ A. 

3    The Modal /i-Calculus. 

3.1    Syntax. 

Definition 1.   The language of the modal fi-calculus [9] consists of the following alphabet: 

• P,Q,... € PropTaxe propositional constant symbols; in particularise assume the exis- 
tence of two constants true and false; 

• X, Y,... € VarTare propositional variables; 

• 7, S,... € Act are action symbols. 

We assume that the set of action symbols Act consists of input {a?,.. .}Youtput {a!,...} and 
neutral {a,...} action symbolsrin order to ensure compatibility with action symbols of CCS 
from the previous section. 

Formulas are defined as follows: 

1. Prwhere P is a propositional constant; 

2. Xrwhere X is a propositional variable; 



3. $i A $2r$i V $2rwhere $1 and $2 are formulas; 

4. (7) $r[7] $rwhere 7 € Aci and $ is a formula; 

5. //X$rVX<&rwhere $ is a formula. 

Note that the absence of negation does not decrease the expressive power of the logier since 
we can always rewrite formulas in a so-called negation normal formT where all negations are 
applied to atomic formulas only (i.e. to propositional constants and free variables)rand then 
define new predicate symbols with the complement interpretation: £(P) = S — £{P) (see the 
next subsection for semantics). 

For examplersome properties of processes P, Q and R from the previous section can be expressed 
as: 

$ = vX.(a)(b\)X 
tf = uX. (6?) (c) X 
Q = vX. (a) nY.((c) X V (b)Y) 

The formulas $ and *£ say that the corresponding pairs of actions can repeat infinitely often. 
The formula 0 says that after a and some finite number of 6's the action c can be executed!? 
and this pattern can repeat infinitely often. 

Now we describe the formal semantics of the logic. 

3.2    Semantics. 

A model (Kripke structure) is a tuple 

M = (S,^,Act,e,£), 

where S is a set of CCS processesr -4C S x Act x S is the transition relation defined on 
figure 1 and projected on ST e : Var ->• 2s is an interpretation of variables (environment)T 
and £ : Prop —>• 2s is an interpretation of propositional constant symbols. In order to be 
consistent with the intuitive semantics of CCS and [8]Twe will also assume that the set 5" is 
closed under the rules of figure 1 (i.e. transition closed). Otherwise we may have a situation 
wherersayrthe process a.O can not perform the action a in the modelHf 0 ^ S. Thusrit does 
not satisfy (a) trueFwhich is counterintuitive. This restrictionrhoweverris not necessary and 
all the results in this paper remain valid without it. 

The semantic function l-}ce assigns semantic sets to ^-calculus formulasFand is defined induc- 
tively as follows: 

lP]ce = £(P);     [X\ce = e(X); 

in particularr|true|£e = S,    [f alsefl^e = 0 

[$1A$2]£e = [$1]£enM£e; 

tt$1V$2]£e = [$1]£eUl$2l£e; 



lvX.$\ce = \J{S' CS\S'C mce[X := S'}} 

\/iX.*]ce = f1{5" CS\S'D [*]ce [X := 5']} 

Here the updated environment e [X := 5"] coincides with e on all variablesrexcept maybe XT 
and 

e [X := S'} (X) = S'. 

The semantics of the fixed points is well-defined by Tarski's Fixed-point Theorem [15]Tsince 
all formulas are negation free. Thusrthe semantic function is monotone on the interpretation 
of all free variables. 

We will write p \=M $ for p €  [^l^el1 and will often omit the subscript M when this is 
unambiguous. We will also write \=M $ to mean that p \=M $ holds for every process p € SMF 
and (= $ to mean that \=M $ holds for all modelsror is valid or generally true. 

3.3    Extensions. 

To make formulas shorter!?we will use compound actions (denoted by a,/?,...) in the modal 
operators. Compound actions are formed from the ordinary actions from Act using the (finitary 
or infinitary) union operator: a U /Twith the semantics of a non-deterministic choice. More 
preciselyrthe compound actions may be viewed as sets of actionsIVhere 

*=* u ^ 
■y£a 

Thusrthe meaning of the modalities for such compound actions is the following: 

[o]*=A[7]*,     <<*)*= V<7>*- 

4    The Compositional Proof System. 

In the sequel we fix a model M - (V,-^,Act,e,C)TwheTe V is the set of all CCS processes. 
We choose the most general modeirsince the results described in this section remain valid for 
all practical submodels used in verification. 

Definition 2. A sequent is an expression of the form $T||A ^ |=A Grwhere $r^ and 0 are 
formulasrand ITA and A C Act are sets of action symbols. 

The meaning of sequents for /^-calculus formulas can be expressed as follows: 

Vp,q.(p\T |=$ andgTA |= tf   =>   (pr|U q) t A 1= ©)• 



We apply the following scheme for proving the correctness of composite systems of the form 
(PHIA?) TA: assume that we have already proven that p IT |= $ and q IA \= $ for some 
formulas $ and \P. To prove that (PT\\A <?) I"A |= 0 for a formula 0 it is sufficient to show that 
$r||A vf (=A @ ig valid. In other wordsIVe can introduce an inference rule: 

Prri-$   $rlU$ i-A0   gfAhfr 
(pr|U?)rAh0 W 

This inference rule was inspired by a similar rule of C. Stirling in [14]. 

In this paper we elaborate on the proof system for sequents of type $ T||A ^ ^A ©■ For details 
on the proof system for p h STwhere p is a sequential CCS termrthe reader is referred to [8]. 

In our proof system we handle fixed points by assigning tags [1611] to the fixed point operators. 
Intuitively (although simplified)Bags store the information that some particular sequents have 
already occurred below in the proof treer assuming that the tree grows up from the goal to 
axioms. The current sequent is included in the tag of a fixed point formula when this formula 
gets unfolded. If the same sequent appears later in the proofTit is considered proved. This way 
of reasoning works for greatest fixed points on the right hand side and for least fixed points on 
the left hand side of the 'h' sign. In practicelVhen unfolding a fixed point formulaHt is not 
necessary to include the whole sequent into the tag. It is sufficient to store only the two other 
formulas of the sequent. ThusIYormallyTtags are sets of pairs of formulasrassociated with fixed 

point operators. 

We extend the syntax of formulas by tags L in the fixed point operators as follows: 

• fiX{L}$rvX{L}§Twhere L is a finite set of pairs of formulas. I.e.VL = {(\I>i, \&2), • • •}• 

We will write fixed points with empty tags in the standard ^-calculus syntaxle.g. //X$ instead 
of //X{0}$rand will not distinguish between them. 

For technical reasonsrto simplify the proof of soundnessIVe have developed a special semantics 
for sequents with tagged formulas!? so that every rule in the proof system is locally soundr 
including the fixed point rules. A standard way to prove the local soundness of the fixed point 
rules is to use the reduction Lemma 4 [16H] (see the next section). In order to apply this lemma 
hererthe semantics of the sequent $ r|U ^ (=A VX{L}® must be of the form U C VTwhere V 
is the (extended) semantic set of uX{L}QFa.nd U is some semantic set corresponding to the 
pair ($, \I>). To apply the reduction lemma to the least fixed points on the left hand side (e.g. 
for fj,X{L}$r\\A ^ I"A 0)Twe need to rewrite the semantics of the sequent into an equivalent 
form: U' C VTwhere U' is now the semantics of the least fixed point formula (j,X{L}$r&nd V 
is a semantic set for the pair (\I>, 0)lpossibly defined differently from the one for ($, W) above. 

Before introducing the new semantics of sequentsl1 define the extended semantics of tagged 
formulas. Assume given two functions fß and /„ that map pairs of formulas into subsets of V 

(e.g. /M($, #) C V). Then the definition of the extended semantic function [/J^ ^e coincides 
with the one of [-l^e from Section 3 on all the operators except the fixed points: 



[uX{L}^'u)e = U{5" C V | S' C [ V LJ^e U [SJ^e [X := 5']} 

^X{L}$]^'/")e = fl{5' C V | 5" D [ A Lffr'Me n [SJ^e [X := 5']} 

where 
JVLJ^W     U    /„(*,*)    and    [ALli/-/")e=     fl    /^(*,*)- 

(*,*)6L (*,tf)eL 

In particularr 
| v <bfM»)e = 0 [A 0J^'/")e = V. 

Noticerthat if all tags in a formula are emptyrthen its extended semantics coincides with the 
semantics defined in Section 3. 

We need to provide suitable functions that assign semantic sets to pairs of formulas]? as we 
discussed above. We call such functions composition and left/right division operations. They 
are introduced in Definition 4Iusing an additional operation of Y-closure and similar operations 
for sets of CCS processes from Definition 3. The F-closure adds to the set of CCS processes all 
the processes that are not of the form (p IT) for this particular T. Lemma 1 allows to rewrite 
the semantics of a sequent in different representations (like U C V and U' C V' above). 

Definition 3. Let ATB and C be subsets of V. Define 

• (A)r=df{q\(3p:q = (p\T))   =*   q € A} 

• {Ar\\AB)\A=4f {(prUq)\A\(p1T) e Azad (q\A) e B} 

• C/l*AAB =df ({(p rr) | for all (q t A) € B : (pr|U «) ^ A € C})r 

• C/FfAV=d/({(<?rA)| forall(Prr)GA: (Pr\\Aq)\AeC})A 

Lemma 1. For A,B,CCV the following holds: 

(Ar\\AB)\ACC   «=»   ACC/fJ/   «=►   BCC/^A 

Definition 4. Let ITA and A be subsets of Act. Then define 

e(*,*)   =df   0 

quotlC*,*)    =df    [$]?'Par)
e/^,Att*]?UOtr'£)e 

quotr(*,¥)   =df   tt$]^par)e/SA^!f0tl'£)e 

par($,*)   =d}   ([$]S:quot''£)er||AWiquotr,e)e)rA, 



It can be shown that this mutual recursion is well-defined. NoteBhat the functions quotirquotr 
and par also depend on ITA and Although we do not include these parameters for the sake 
of readability. The semantics of the sequent $ r|| A * |=A © for tagged formulas $r$ and 0 is 
defined as follows (with the same ITA and A in par): 

*r|U*K©   «=►   par($,$)C[0](f'Pa,V 

Lemma 2. Assume that all v-subformulas in $ and # and all /x-subformulas ofQ have empty 
tags. Then 

*r|U * K ©   <=►   (Vp,* : (p rr) € [<4quotU)e  and  (q t A) € M?uotr'£)e 

(pr\\Aq)\Aeietpar)e) 

We will define a sound approximation $ r|U * f~A 0Ffor which we can build a proof system. In 
this proof system all the proof rules preserve the conditions of Lemma 2. ThereforeHf we start 
with formulas with empty tagsrthen all the sequents produced during the proof will satisfy 
these conditions. 

The Compositional Proof System consists of axioms (fig. 2) and inference rules (fig. 3r4 and 
5). We say that a sequent $T||A ^ hv © is valid if there is a derivation of this sequent in the 
proof system. 

We will not show all the rules here; we provide only the rules dealing with the leftmost and 
the rightmost formulas (labelledre.g.  by (/ [.] 1) and (r [.])).  The corresponding rules for the 
middle formula are symmetrical with those for the left formula (referred to asFe.g.   (/ [.] 2))T 
and will be provided in the full version of the paper. 

Noterthat we could not have most of the axioms and modal inference rules in such a simple 
form as they are if we had used r-actions instead of neutral actions. For r-actionsFfor exampler 
the rule [rl] (figure 5) would have to have as many premises as there are synchronizable pairs 
of actions in T and AFor the formulas $ and \P would have certain restrictions on all the other 
actions. This is inconvenient and unnecessaryFsince in our system we can represent the action 
r by the set of all neutral actions a that arise from the synchronous execution of a? and a\. In 
additionFwe can also easily prove properties for only those synchronizations we are interested 

in- 

An Example Proof. We will show here a short example proof for the processes P, Q, R and 
their specifications $r^? and 0 described in Sections 2 and 3. 



falser||A* hAe     $r||Afalse hA© $r||A* hA true 

/IX{L}*IJ||A* l-A0     *r\\AßX{L}V hA © <MIA * '"A UX{L}Q 
if(*',0')Gi if(*',0')€L if (*',*') 6i 

where $' <J $r*' < \S and ©' <3 © in the last 3 axioms. 

*rlU* I-AH© 
where for all 7 S a :  (7 £ A) or (7 0 T U A and if 7 = a is neutrairthen {(a?, a!), (a!, a?)} n T X A = 0) 

[a]f alser|U * r-A [<*]© (a D A = 0)   (where Va £ a. {(a?, a!), (a!, a?)} D T X A = 0) 

(a)*r|U* l-A©(o;nr = 0)    $r||A{/9)$ HA © (/? n A = 0) 

[a?]falser|U* HA W© *rlU [a!]false hA [a]@ 
where (a! ^ T or a? ^ A) and a^TUAin the last 2 axioms. 

Figure 2: Compositional Proof System: Axioms. The (syntactical) relation on formulas $ <J $ 

means that the formulas have exactly the same structure except tags (that isrtheir untagged 

versions are the same)land all tags of $ are subsets of the corresponding tags of \I>. 

(IwV) r,T\\A jr |-A(ä (wnere $ and Cl have empty tags and (= fi —► $) 

(rw) ^FA^|_A^(where © and Ü have empty tags and \= 0 —»■ ft) 

l'/xl^Anr||A*i-A©       ^v -M        $vnr||A*t-A© 

(r,A   ^TIIA^I-A© rrA\*rllAtfr-A9     ^TIIA^HA» 
v v^*r||A*l-A0vn V'V $r||A*l-A0An 

Figure 3: Compositional Proof System: Propositional Inference Rules. 

/,„n«rx//«x{&u{(tt,em»irllAgHAe rr, A *PIIA * hA©rx/^{Lu{($,^)}}©] 
V*/^ ^X{L}*r||A*r-A© Vrz/; $r||A*r-A^{L}© 

(hAs9\XluX{L\<i\T\\^\-hB ,     s<bT\\^hh®[XlßX{L}@] 
Vul)     vX{L}*r\\AV)-A® VW     ir\\Ai2hAßX{L}e 

Figure 4:  Compositional Proof System: Fixed Point Inference Rules.  The notation $ [X/^>] 

denotes the substitution of \I> for X in $. 



/■r-i-n        «MIA^A© (ggruAand (f-r^W SI-HA^A© /   r M 
(LrlJ)[a?]$r||r[a!j*HAlaJÜ     (a!,a?)^TxA) UT1" (a?)*r||Ä <«!>* ^AW© V° G A' 

e» H i) tJsS^^igS»(*n *=0) 

V  L-J; (*'A)[a]*r||A (*'A)[/?]tf VA[aU/3]0^ n A _ p> n 1  -V) 

where Va6öU/J. {(a?, o!), (a!, a?)} n T X A = 0 in the last 3 rules. 

Figure 5: Compositional Proof System: Modal Inference Rules.  Formulas in parentheses are 
optionairbut if some (<&A) occurs in a premisefthen it must occur in the conclusion. 

(axiom) 

*rlU* hA0i 
 CO 2) 
*r||A(c>* HA<c)ei 
 (rß, rV) 
*rlU(c)¥ hAßY.((c)@1V{b)Y) 
 ((T2)) 

(M) * rlU <t?> (c> * ""A W /*V.((c) ©i V (b) Y) 
 (rV) 
(6!) $ rlU <M) <c> * HA (c) 0! V (b) ?Y.({c) ©i v (6) Y) 
 M 

(6!) $ r||A <6?) <c> * hA ßY.((c) ©! v (6) Y) 
 CO 1) 
(a) (6!) * r||A (6?) (c) * hA (a) ßY((c) e, V (6) F) 
 (r^, /i/l, lv2) 

«rlU* l-A© 

Where 

0! = i,X{(*, ¥)} (a) ^.((c) X V (6> F). 

5     Soundness. 

Soundness of the proof system described above can be stated as the following theorem: 

Theorem 3. (Soundness) Assume that all u-subformulas in $ and $ and all fj,-subformulas of 
0 have empty tags. Then 

$r|U* HA0   =*   *r|U* K0- 

10 



Before sketching the proof we state the following lemma. 

Lemma 4. (The reduction lemma [16H]). Let D be a set and f : 2D -> 2D be monotone with 
respect to C. Denote operators of the least and the greatest fixed points of f as ftx.f(x) and 
vx.f(x) respectively. Then 

(i) U C ux.f(x)   *=*   U C f(ux.{U U /(*))) 

(ii) U D fix.f(x)   4=>-   UDf{vx.{Unf{x))) 

PROOF.   (Of Theorem 3. Sketch). 

We show soundness of the proof system by showing that all axioms and rules are individually 
sound (i.e. axioms are valid and rules preserve validity). For most of the rules the proof is 
straightforward but tediousFusing Lemma 2. The soundness of the fixed point rules (lfJ.l)T 
(l(j,2) and (ru) follows directly from Lemmas 1 and 4. Fixed point axioms are valid because 
of the monotonicity of composition and division operators (composition is monotone on both 
argumentsrdivision is antimonotone on the first argument and monotone on the second)Tand 
the following relations: 

LCL'   =»   [V L}{U'U)e C [ V L'j(U'U)e  and   [ A LfMv)e D [ A L'J{U<U)e 

UCV   =►   fix.(Ur\f(x))Cfix.{Vnf(x))  and  ux.(UU f(x)) C ux.(V U f(x)) 

for a monotone / as in Lemma 4. a 

The proof of soundness was completely checked using the theorem prover PVS [13]. All the 
inference rules are encoded as theorems and can be used as rewrite rules when a proof is in 
progress. The completeness of the system is still an open problem. 

6    Implementation in PVS. 

The Compositional Proof System is implemented in PVS theorem prover [13]. The main ob- 
jectives of this implementation were to check the soundness of the system and to try out some 
relatively small proofs in the system. The PVS was chosen as an implementation framework 
because it has a built-in model checker. Sorboth steps of the verification of finite-state systemsr 
i.e. model checking the components and deriving the global propertyFcan be done in PVS. We 
verified two examples using the system: (1) Alternating Bit Protocol (ABP) [4r6] and (2) 
Milner's Scheduler [12]. 

The ABP example consists of three parallel processes Sendr Medium and Receiver combined 
together by two parallel composition operators: 

ABP = ((SendrJrM
Medium)A||rKReceive) rA 
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with appropriate restriction sets. Each individual process including the intermediate 

(Sendrs||rM Medium) 

has its own specification. The specifications for the 'atomic' processesH.e. Send, Medium and 
Receiverwere directly model checked using SMV [10]. The specifications of compound processes 
(i.e. obtained by parallel composition) were derived from the components in the proof system. 

The example of the Milner's scheduler is more involved and includes induction on the number 
of parallel processes. There are only two very simple 'atomic' processes: an arbiter p and a 
short wire sw. A scheduler with n arbiters is defined as 

Sn = (Bnr„|U„sw{En})rAn 

and the body Bn is recursively defined by: 

Bx  = (p{Hi»rrx 
Bi+i   =   (Biri||ni+1p{^+i})rri+i 

The relabelling £,- is used to rename input and output actions so that they would not cause 

any confusion among different copies of p. 

The verification was done by induction on the number of arbiters: 

• Specifications for p and sw were model checked; 

• Assuming proved Bn |= $n and sw{S„} |= #nrthe sequent $„r„IU»*«  I"A„ ©n was 
derived with n as a parameter; 

• Also assuming p{Hn} |= </>„rthe sequent $„r„lk+1 </>n+i ^r„+1 $n+x was proved. 

After model checking of Bx j= *i the verification was complete.   Thusrwe showed that for 
arbitrary nTSn \= 0„ by induction on the number of parallel components. 

The hardest part here was to find the right invariant $„ and to prove the sequent 

$nr„||fin+i<?Wl   hVi  $n+X- 

The chart below shows the proof size in steps for several sequents: 

Max Formula 
length 

nesting 
depth 

altern, 
depth 

# proof steps 
(direct) 

# proof steps 
(simplified) 

17 5 2 80 80 

15 3 2 23 23 

23 3 2 4.65 • 10s 814 

The column "# proof steps (simplified)" refers to the number of steps without repetitions of 
identical subproofs. As it can be easily seenrthe naive proof tree ("direct" column) contains a 
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lot of repetitions in the last proof (the induction step for the Milner's Scheduler). The blowup 
was caused by multiple instances of bound variables in fixed point operatorsrsince the unfolding 
of fixed points produced several identical copies of subformulas. ThusHt is much more practical 
to think about a proof DAG (Directed Acyclic Graph) rather than a proof tree. Unfortunatelyr 
PVS does not allow to detect identical subgoals dynamically. Thereforerthis proof system needs 
to be implemented in a special purpose theorem prover designed specifically for this system. 

7    Conclusion. 

We have presented a Compositional Proof System for the modal //-calculus and a (more general 
version of a) parallel composition operator of CCS. The proof system allows us to decompose 
a verification task into simpler tasks for each parallel component. For examplerin the finite 
state caserif we are to verify that a process term of the form (Pr|U Q) fA has a property 01? 
we can reduce this task to showing that P \ V satisfies $ and Q \ A satisfies \P for some suitably 
chosen $ and $ for which we can derive $r||A# I"A 0 in our proof system. This way of 
compositional reasoning significantly reduces the state explosion problem arising in the direct 
model checking method [6]. In generalHt is much easier to model check two properties of two 
components and prove a sequent $r|U * l~A ©rthan to model check the same property 0 for 
the result of the parallel composition directly. The reason is that in the finite-state case the 
parallel composition operator often causes an exponential blow-up of the number of statesFand 
one may easily obtain an intractable size in a very simple example. In contrastrin our approach 
we would have to explore only several relatively small state spacesFand when formulas are not 
too long (which is often the case)rproduce tolerable overhead by deriving the global propertyr 
which results in computationally simpler and faster verification. Similar reasons work in the 
infinite-state caserexcept that we have to compare a different notion of complexity rather than 

the number of states. 

Another significant advantage of the approach is that it supports a compositional design in 
the following sense. Supposel1 we are to design a complex system consisting of dozens (if 
not hundreds or thousands) of parallel components. What we have to do first is to specify 
every component in some higher level specification languageFand then make sure that if every 
specification is metFthen the whole design will be correct. Our compositional proof system can 
naturally assist in solving this problem even before the actual implementation has startedrand 
one may save significant amount of effort in case the specifications contain a subtle but crucial 
error. MoreoverFafter the implementation there is no need to verify the entire system. Insteadr 
it is enough to prove the correctness of each of the components separatelyl1 which is a much 
simpler task. 

There are many open problems in the area. To mention only the most important onesFwe do 
not know if the proof system is complete in general or for any particular class of CCS processes. 
Another open question is the decidability of $r|U $ |=A 0- A positive answer would make a 
compositional model checking problem fully automatic and possibly tractable for virtually any 
size and complexity of finite-state systems. 
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In future we plan to implement this system more efficiently in a special purpose theorem prover 
and provide a better input language for writing specifications of parallel systems and their 
properties. 
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